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ABSTRACT

SINGLE-PHASE TURBULENT ENTHALPY
TRANSPORT

SEPTEMBER 2014

BRADLEY SHIELDS

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt

Vapor generation is central to the flow dynamics within fuel injector nozzles.

Because the degree of atomization affects engine emissions and spray characteristics,

quantification of phase change within diesel fuel injectors is a topic of design interest.

Within the nozzle, the large pressure gradient between the upstream and downstream

plena induce large velocities, creating separation and further pressure drop at the inlet

corner. When local pressure in the throat drops below the fluid vapor pressure, phase

change can occur with sufficient time. At the elevated temperatures present in diesel

engines, this process can be dependent upon the degree of superheat, motivating the

modeling of heat transfer from the wall.

By modeling cavitation and flash boiling phenomena as a departure from equi-

librium conditions, the HRMFoam model accurately reproduces canonical adiabatic

flows. An experimentally determined relaxation time controls the rate at which vapor
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is generated, and includes model constants tuned for water and a diesel fuel surro-

gate. The model is shown to perform well for several benchmark experimental cases,

including the work of Reitz, Lichtarowicz, and Nurick.

With the implementation of the Farve-averaged energy equation, the present work

examines and validates the transport of enthalpy through the fixed heat flux and

fixed wall temperature boundary conditions. The pipe heat transfer experiments of

Boelter and Allen are replicated using the kEpsilon, Realizable kEpsilon, and Spalart-

Allmaras models. With proper turbulence model selection, Allen’s heat transfer coef-

ficient data is reproduced within 2.9%. Best-case bulk temperature rise prediction is

within 0.05%. Boelter’s bulk temperature rise is reproduced within 16.7%. Turbulent

diffusivity is shown to determine radial enthalpy distribution.
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CHAPTER 1

LITERATURE REVIEW: PHYSICS

Within an automotive internal combustion engine, the process of phase change

heavily influences spray mechanics and overall performance. Fuel injector atomization

determines engine power and emissions. In this processes, fuel forced through the

injector’s diminutive orifice experiences a pressure drop. If the pressure drop lowers

the pressure of the fluid below the vapor pressure, the flow may begin to change

phase. If the downstream pressure is also below the vapor pressure, the vapor will

not recondense, yielding a vapor/liquid mixture at the nozzle exit.

The process of a medium’s phase change from liquid to vapor is thermodynamically

identical whether it occurs via predominantly enthalpy or pressure [10]. Figure 1.1

shows a system comprised of some simple substance (represented by the red dot) in

the liquid phase. Applying enough enthalpy to move the system across the saturated

liquid/vapor line (while holding pressure constant) causes the liquid to become vapor

by boiling; if instead the system is depressurized at constant temperature, cavitation

takes place. In practice, the phase change process is gradual and a combination of

the two; raising the temperature increases the vapor pressure, whereby a relatively

smaller drop in pressure is able to cause phase change. Figure 1.2 shows this process

in more detail - once sufficent enthalpy moves the system out of the subcooled region

into the two-phase region, vapor generation occurs. The mass fraction of vapor x

increases as enthalpy is added, until the fluid is completely converted to vapor in the

superheated region.

1
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Figure 1.1: Generic pressure vs. temperature diagram for a material; system state
represented by red dot.

Figure 1.2: Enthalpy vs. temperature diagram for a two-phase system. Mass vapor
fraction (x) increases from left to right in the two-phase region.

1.1 Vapor Generation and Bubble Growth

Once the pressure within a fluid has dropped below the vapor pressure, the flow

is considered metastable, and bubble nucleation can occur. Disturbances such as

density fluctuation or variable composition (dissolved particles/gasses) can lead to

bubble formation [10]. More specifically, this process is separated into heterogeneous

and homogeneous formation. Heterogeneous formation stems from wall roughness

and inconsistencies in composition. Homogeneous formation comes from microscopic

2
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density fluctuations due to Brownian motion and is dependent on the degree of su-

perheat [11] [27]. Once vapor nuclei form, they grow or dissolve based on pressure

fluctuations. Surface tension resists the bubble’s growth; if the pressure difference

across the edge of the bubble balances the surface tension, the bubble will survive

[39].

If the bubble does not collapse, growth occurs as fluid evaporates at the bubble

wall. Early on, surface tension is the primary limiting factor. Once the bubble roughly

doubles in size from its original radius, the difference between the vapor pressure and

the exterior pressure drives growth rapidly [39]. In hot ambient conditions, once the

bubble is large enough, evaporation at the wall is driven by heat from the surrounding

liquid. At high temperature, vapor pressure and vapor temperature each drop with

evaporation, necessitating added heat for continued bubble growth [27]. This makes

the bubble’s growth a function of heat transfer rate [11].

Interphase heat transfer is therefore important to quantify. In the context of a fuel

injector, the vapor generation process is limited in part by the available heat energy.

This is expressed by Jakob number, which represents the ratio of the heat capacity

of a fluid to the heat required for phase change (the latent heat of vaporization), and

is definied as

Ja =
ρlCp∆T

ρvhfg
(1.1)

with ρ representing density, subscripts l and v the liquid and vapor phases respectively,

Cp the specific heat at constant pressure. The latent heat of vaporization is hfg, and

∆T is the degree of superheat. When Jakob number is large, phase change occurs

readily upon bubble nucleation. Low Jakob number indicates that the process is

controlled by a lack of heat supply.

A small ∆T yields more potential phase change at low temperatures than the

same ∆T at higher temperatures. Because vapor density and therefore latent heat of

3
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vaporization increase with temperature, cold flows require less energy for evaporation

by Eq. 1.1 [27]. In addition, at higher temperatures, phase change causes a drop

in vapor temperature and consequently vapor pressure. The degree of superheat

becomes essential, as the newly formed vapor drops in temperature and the bubble

requires additional heat energy to continue expanding [27]; heat transfer affects low-

temperature bubble growth little, where kinematic effects dominate [27], but is the

crux of high temperature bubble growth.

1.2 Geometric Considerations

While a nozzle’s pressure and enthalpic conditions may suggest the presence of

vapor generation, physical geometric considerations have strong effects on the amount

of phase change actually taking place and the flow dynamics. The length of the nozzle

determines the time available for bubble nucleation and growth, while the sharpness

of the inlet orifice controls the size of the vena contracta [16]. The inlet of a nozzle

represents a severe contraction in the flow, and a change in pressure and velocity to

fluid particles. At large pressure differences, fluid only fills the nozzle partially, as the

high-velocity fluid is unable to turn the inlet corner. The space unoccupied by fluid

is referred to as the vena contracta, and extends from the nozzle orifice along the

wall of the injector. While the gap created by this phenomena often becomes filled

with vapor, it is not actually caused by vapor generation; Numachi found a constant

reduction in cross-sectional nozzle area with a given pressure differential, regardless

of the degree of cavitation [43].

The output of the effective nozzle area, reduced by the vena contracta, is measured

by coefficient of discharge. It is the ratio of the ideal Bernoulli mass flow rate to the

actual nozzle output [12], or

Cd =
ṁactual

ṁideal

=

√
1
2
ρV̄ 2

p1 − p2
(1.2)
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where ṁ is mass flow rate, V̄ is the mass averaged velocity in the throat, P1 is the

pressure upstream of the nozzle, and P2 is downstream pressure. As a function of Cc

(the ratio of flow cross-sectional area to total nozzle cross-sectional area), the fraction

of the nozzle’s cross-sectional area remaining after considering the vena contracta

[44],

Cd = Cc

√
P1 − Pv
P1 − P2

(1.3)

where Pv is the vapor pressure. By continuity, the flow will increase in velocity due

to the reduced area in the nozzle throat. This can yield the choked flow condition,

where the nozzle output becomes independent of the downstream pressure. This will

be explored in greater detail in the following sections. Stemming from continutity and

Bernoulli’s equation, Nurick [44] generated this analytical model by varying upstream

and downstream pressure with nozzles of various length to diameter (L/D) ratios.

Quantifying the effects of the vena contracta on output flowrate, Nurick’s model

summarizes the performance of round orifices in the cavitating region for water and

yields accurate coefficient of discharge values for L/D ratios of 2-20 [44].

In the noncavitating region, CD is instead dependent upon Reynolds number [35]

(Fig. 1.3). By aggregating the experiments of Morgan [41], James [26], Sanderson

[54], and others, Lichtarowicz [35] organized coefficient of discharge data by L/D ratio

(Fig. 1.3). Within each L/D ratio and as a strict function of Reynolds number, CD

becomes essentially constant beyond a Re of 104. Without sufficient length for the

vena contracta to reattach, L/D ratios below roughly 2 show a drop in CD as Re

increases before approaching the final constant value CD.

The geometry of an injector potentially has strong influence on the behavior of

the flow. The sharpness of the inlet corner determines the behavior of the vena con-

tracta. When sharp, the inlet corner can potentially cause the vena contracta to

extend though the nozzle exit (called hydraulic flip) [3]. In contrast, with a suffi-
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ciently rounded inlet the transition from the plenum to the nozzle throat is eased

such that there is essentially no vena contracta. With rounded nozzles, lower criti-

cal cavitation number is found [44], translating to larger critical pressure ratios and a

small increase in flow rate [16] as compared to sharp nozzles with identical L/D ratios

and pressure conditions. Many experimentalists do not document the inlet rounding

of their nozzles, making comparision between sources problematic.

Further, the ratio of a nozzle’s length to its diameter (L/D) can be limiting even

if nozzle conditions would otherwise produce vapor. Large superheats in metastable

systems yield spontatenous vapor generation given sufficient time; in short nozzles,

the flow-through time may be so short that no phase change actually takes place

within the nozzle. To accurately determine the effect of nozzle length on quantity

of vapor generation, Fauske examined the relationship between L/D ratio and the

pressures that caused choking. Under flashing conditions, Faukse [16] performed a

series of nozzle tests with various L/D ratios (Fig. 1.4). Increasing L/D ratio while

holding the upstream and downstream pressures constant yielded greater critical exit

pressure to upstream stagnation pressure ratio. More simply, shorter nozzles choked

at larger pressure differences than their longer counterparts, indicating less vapor

generation under identical pressure and enthalpic conditions. Fauske’s data collapsed

for various inlet and outlet pressure combinations.

6
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Figure 1.3: Reynolds number vs. CD. Adapted from Lichtarowicz [35]. L/D = 4.

Figure 1.4: Critical pressure ratio vs. L/D ratio for 0.25 inch inner diameter tube
[16].
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CHAPTER 2

LITERATURE REVIEW: TWO-PHASE CRITICAL FLOW
MODELING

Analytical approaches to two-phase flow vary in detail. They are seperated into

those that attempt to quantify non-equilibrium phenomena and those that make

simplifying assumptions to remove some complexity in modeling. The Homogenous

Equilibrium Model (HEM), for example, assumes the two phases to be in complete

equilibrium. More in-depth analytical approaches attempt to directly model intricate

phenomena such as bubble dynamics and vapor generation. Seperated flow models

are the most involved, and treat each phase as a seperate fluid with unique equations

for each aspect of the two phases.

Much two-phase modeling is done in the context of critical flow. Pressure differ-

ential across a body of fluid imparts a velocity differential. The greater the pressure

difference, the larger the velocity. When fluid velocity will no longer rise with de-

creasing downstream pressure, channel flow is considered choked, or under critical

flow conditions. In general, flow rate is maximized when

(
δG

δp

)
S

= 0 (2.1)

where G is mass flux and p is local pressure; moreover, this path is usually thermo-

dynamically assumed isentropic [53]. This condition is useful to find the maximum

flow rate for a nozzle, pipe, or channel.

There are many industrial applications, as systems transporting fluid under pres-

sure may exhibit choked flow conditions in the event of a break [7] [37]. Pressure
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vessels and pipes can exhibit critical flow conditions, making critical flows useful to

nuclear reactor power plant safety systems in measuring the rate of energy release

should an accident occur [16]. During an accident, the time required for breakage

to cause a reactor to become uncovered as well as the quantity of water required

to cool the core post-break are essential quantities that hinge upon proper flow rate

predicition [53]. The motion of refrigerant and cryogens can likewise depend upon

critical flow conditions [23].

2.1 Limiting Assumption Models

2.1.1 Homogeneous Equilibrium Model

The HEM is perhaps the simplest analytical approach, and treats the flow as a

single fluid. The HEM assumes velocity, pressure, and thermal equilibrium between

the vapor and liquid phases. The two-phase flow is treated as a single pseudo-fluid,

with thermodynamic properties calculated via equations of state or from tabulated

data. This complete equilibrium assumption is most appropriate in channels of large

L/D ratio, where there is sufficient time for the fluid to transition to its equilibrium

state [16]. Experimentally, little difference is shown in maximum critical flowrate

between channels of L/D 12 and L/D 40, indicating the validity of this assumption

past L/D 12 [16] [37]. Lee and Reitz [69] used a generalized HEM model to examine

transient end-of-injection nozzle phenomena in single and multihole VCO nozzles.

2.1.2 Slip Flow

Slip Flow models make a limiting assumption regarding the relative velocites of

the vapor and liquid phases. Because each of the phases exhibit different densities

and are not finely dispersed in one another, their velocities are likely to be different

[53]. Solving for slip ratio K, defined as the ratio of mean vapor velocity to mean

liquid velocity, while determining exit quality with a frozen flow or equilibrium model,
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yields maximum overall flow rate [65]. Moody [40] assumed thermal equilibrium and

used stagnation enthalpy to determine maximum choked flowrate, as

K =

(
Vgas
Vliquid

)1/3

(2.2)

with V representing the velocity of each phase. If instead the exit momentum flux is

known, maximum flowrate occurs when [65].

K =

(
Vgas
Vliquid

)1/2

(2.3)

Fauske [17] and Moody [40] each showed that the fluid velocity of each phase does

not limit the speed of the other, as previously proposed by several researchers [70].

2.2 Empirical and Two-Fluid Models

2.2.1 Frozen Flow

Frozen flow uses the assumption that quality remains constant throughout a flow.

Appropriate in short nozzles where there is insufficient time for vapor nucleation, it is

often paired with the assumptions of isentropic expansion, ideal gas behavior, equal

average phase velocities, and a lack of heat or mass transfer between phases [23]. The

model suggests no vapor formation and a strict adherence to the velocity predicted

by Bernoulli’s equation when the flow is initially subcooled [65].

Henry and Fauske [23] used an empirical coefficient based on the difference in HEM

quality prediction at the nozzle throat and experimentally determined stagnation

quality. The authors found good agreement between both HEM and frozen flow

to experimental values, except that frozen flow understimated the critical pressure

ratio while the HEM underestimated flowrate. Therefore, with stagnation quality

above 0.10, the model resembles HEM, while very low values use the frozen flow

model; moderate values blend the two approaches. Their blended model required

only knowledge of upstream conditions.

10
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2.2.2 Bubble Dynamics Modeling

Reliably predicting the rate of vapor generation in a liquid flow is central to the

accuracy of flash boiling/cavitation models. In addition to an understanding of the

physical phenomena taking place, quantifying the vapor generation fundamental to

the development of vapor pockets and bubbles is necessary for a more complete view

of two-phase fluid dynamics, especially when modeling. Bubble growth is inherently

tied to pressure - after passing a critical formation radius, a bubble only grows as

large as the difference between vapor pressure and far-field pressure will allow [39].

In his 1917 paper, Rayleigh [49] examines the scenario of a vapor bubble in an

infinite incompressible liquid medium. Far-field pressure P∞ and initial internal bub-

ble pressure Po are related to bubble radius (at a given time t) R and initial bubble

radius Ro.

Figure 2.1: Rayleigh’s Bubble Nomenclature

Beginning with the work done by the boundary of the collapsing bubble (Equation

2.4) and equating it to the kinetic energy of this collapse (Equation 2.5), a relation

is derived for wall velocity vs. bubble radius with static pressures inside and outside

the bubble.

11
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4πP∞
3

(R3
0 −R3) (2.4)

1

2

∫ ∞
R

u2· 4πr2dr = 2πρṘ2R3 (2.5)

Equation 2.5 contains r, the radial location at some arbitrary length greater than the

bubble radius, and u, the velocity of the surrounding fluid at that radius. The integral

is performed over the range of possible r to find the work associated with the bubble’s

collapse. By Boyle’s Law, the pressure and volume of a gas are inversely proportional

when temperature and mass are held constant. Assuming that temperature change

is negligible during compression, the work due to compressing the vapor bubble is

subtracted from the combination of Equations 2.4 and 2.5, yielding:

U2 =
2P∞
3ρ

(
R3

0

R3
− 1

)
− 2Po

ρ

R3
0

R3
log

R0

R
(2.6)

Equation 2.6 is then solved for the point at which wall velocity is zero for various

combinations of far-field pressure and initial internal pressure. The pressure/radius

relationship becomes more important with decreasing volume, as does the impact of

pressure itself.

Plesset [47] further examined the relationship between bubble growth and pres-

sure. To assess the growth of a vapor bubble, he combined experimentally-determined

non-cavitating absolute pressure distributions known at each point on the surface of a

submerged body with the general equation of motion for a spherical bubble in liquid

(2.7),

p(R)− P (t)

ρ
=

3

2
Ṙ2 +RR̈ (2.7)

where P(t) represents external pressure, P(R) is the pressure at the boundary, Ṙ is

the wall velocity and R̈ its acceleration. Note that Rayleigh’s bubble radius equation

is a special case of this equation. Applying this equation to a bubble traveling along
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the body correlates bubble position in space to absolute pressure in space, thereby

yielding the pressure experienced by the bubble as a function of time P (t). It is

further stipulated that,

p(R) = pv −
2σ

R
(2.8)

with pv as vapor pressure and σ as the surface tension constant. Numerically in-

tegrating the combination of Equation 2.7 and Equation 2.8 yields an equation for

bubble radius as a function of time, which allows for the characterization of growth/-

collapse periods. This model does not account for bubble asymmetry due to pressure

gradient near the body, overestimates the wall acceleration due to the proximity of

the body, and ignores boundary layer effects, but these errors are quite small [47].

Furthermore, the change in temperature associated with bubble formulation/collapse

is small under cold conditions, and is likewise neglected [47]. However, the product

of bubble pressure and volume is non-trivial and can rise during collapse and slow

wall velocity [47]. Despite these caveats, it is clear that there is a delay time between

a change in pressure experienced by a vapor bubble and the corresponding change in

radius (see Figure 2.2); vapor formation is a finite rate process.

Figure 2.2: Bubble growth in response to pressure. Note the latency associated with
change in radius.
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Kubota et al.[31] extended Rayleigh’s model to predict mean bubble radius in

cloud cavitation. Attached sheet cavitation, critical to nozzle flows, can become un-

steady, and produce boundary layer seperation. The resulting separated shear layer

can roll up, creating a vortex that is advected with the flow. The vortex contains a

low pressure region at its center, producing a cavitation cloud that can be assumed

locally homogenous in bubble number density and bubble radius. Using a finite dif-

ferencing scheme, Kubota et al.[31] modeled two-phase bubbly flow about a hydrofoil

to investigate these phenomena, including sub-grid-scale bubble interaction in their

model. Their model sucessfully predicted sheet and cloud cavitation structures as

compared to experimental data.

2.2.3 Homogenous Relaxation Model

The Homogenous Relaxation Model is an extension of HEM. In addition to con-

servation of mass, momentum, and energy, HRM includes a differential equation

describing the rate at which local dryness fraction x returns to equilibrium,

Dx

Dt
=
x− x̄
θ

(2.9)

where x̄ is the unconstrained-equilibrium dryness fraction. In the limit of θ = 0, the

HRM acts like HEM, with an instantaneous return to equilibrium conditions. When

θ approaches ∞, the quality will not change, as in frozen flow. This linear, one-

dimensional approximation of the finite rate phase change process makes the HRM

adept at capturing dispersion and wave dissipation effects more easily than two-fluid

models[15]. Dispersion markedly affects the primary flow mechanics, and is caused by

the non-equilibrium of the two phases, making quantification of this process extremely

important in the correct prediction of void fraction, pressure, and velocity distribu-

tion [4] [15]. Two-fluid models are able to do this, but at high computational cost.

14
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Relaxation models have had success in chemical reaction gas dynamics, motivating

their experimentally-validated use in two-phase flow [4].

Figure 2.3: Relaxation time as a function of relative pressure drop and void frac-
tion. Relaxation time rapidly approaches zero as either pressure drop or void fraction
increases. Ps here is saturated pressure. Adapted from [15]
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Prediction of the vapor generation rate determines the character of HRM, as in

Equation 4.1. However, it is dependant upon local relaxation time, which is very

difficult to measure. Instead, analyzing the experimental void fraction and pressure

distribution measurements of Reocreux [52], relaxation time is a strictly decreasing

monotonic function of void fraction and non-dimensional pressure difference with an

exponential tendency toward equilibrium conditions [15], as

Θ = Θ0ε
−0.54ϕ−1.76 (2.10)

where Θ0 = 3.84 × 10−7 seconds, ε is void fraction, and ϕ is the non-dimensional

pressure difference, computed as

ϕ =

[
Psat(Tin)− P

Pcritical − P (Tin)

]
(2.11)

Schmidt [56] examined diesel injector nozzles using both the HEM and HRM.

Through short nozzles running fluid below superheat values of 10oC, comparison to the

experimental results of Reitz [51] showed good agreement using the thermodynamic

equilibrium assumption. As temperature increased and the vapor pressure became

greater than the downstream pressure, the flow rate values predicted by the numerical

model diverged from the experimental. The homogenous pressure assumption did not

allow for pressures lower than the vapor pressure that were found in the nozzle throat.

In reality, the lower pressures yield additional fluid acceleration, a non-equilibrium

phenomenon outside the scope of the HEM.

Neerokar et al. [42] simulated both non-cavitating and cavitating conditions in 3D

using the HRM. A modeled diesel surrogate was used as the working fluid, with ther-

modynamic properties interpolated from a lookup table. Comparison to the experi-

ments of Winklhofer et al. [68] was favorable for discharge coefficient under vapor-lock

conditions, but showed that the model overpredicted near-wall vapor velocity.
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2.2.4 Two-Fluid Models

Separated flow models, also known as Two-Fluid models, use separate equations

for the mass, momentum, and energy conservation of the vapor and liquid phases.

Two-fluid models seek to reproduce the mechanics underlying flow phenomena rather

than emulate their observable effects, in contrast to bubble dynamics models or flow

regime catagorizations. In this way, these models attempt to remove the application-

specific nature of models that require significant limiting assumptions, either in part

[53] or almost completely [7]. This leads to large, complex models, able to solve many

different flow conditions at the expense of heavily increased computational cost.

Richter [53] utilized a one-dimensional separated flow model, emphasizing the hy-

drodynamic and thermal non-equilibrium pertnient to two-phase critical flow. While

unique conservation equations were used for the two phases, initial bubble density

and bubble diameter were empirically assumed, in line with the experiments of Re-

ocreux [52]. Bubble flow regimes were characterized by void fraction. The bubble

regime, dominated by thermal non-equilibrium, was found to exist until vapor gener-

ation yielded a vapor fraction α of 0.3. The churn-turbulent zone, characterized by

bubble coalescence, yielded decreasing interfacial area and increasing vapor velocity

to liquid velocity ratio. A return to thermal equilibrium and the onset of velocity

non-equilibrium was also evident. This gave way to the annular flow regime at a void

fraction α of 0.8 [53], where choking flow yielded unequal velocity and temperature.

Minato et al [37] focused on two-dimensional two-phase pipe flow from a vessel

to evaluate the effects of multi-dimensional flow on critical discharge rate and com-

pare 1D and 2D calculations. Their model reproduced choked flow conditions, and

emphasized the importance of pipe inlet geometry. The model gave physical results,

prediciting a liquid core surrounded by heavily gaseous two-phase fluid. Their two-

dimensional calculations produced very similar results to their one-dimensional results

when inlet velocity was uniform. A relatively steady-state region between the pipe
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inlet and exit was found beyond a L/D ratio of 1, but was no longer found at a L/D

of 1
3
.

Boure [7] examined the classical model of Vernier and Delhaye [63] and Boure and

Reocreux [8], which utilized transfer terms in the conservation equations assumed

to be functions of only space, time and dependant flow variables [7]. For two-phase

flow, the model returned identical results for critical flow rate and the rate of small

disturbance propogation, yielding erroneous results. Boure generalized these equa-

tions, implimenting partial derivatives of the dependant variables, allowing better

coupling between phases. Friction and heat transfer relations based only on depen-

dant flow variables were used for closure, while interfacial drag was determined by

flow regieme. His critical flow criterion was determined by setting the determinant

of the set of conservation and closure equations equal to zero under stady state flow

conditions [7]. The resulting model was properly non-reactive to increasing pressure

difference beyond the threshold required for choked flow.

2.2.5 Modern Modelers

Modern cavitation models tend to incorporate various effects in addition to cav-

itation itself. Formation and transport of vapor bubbles, the effects of turbulence

on the pressure and velocity field, and the presence of dissolved non-condensible

gasses and their implications are described by the Full Cavitation Model [57]. Val-

idated against high-speed flow over a hydrofoil and cylindrical bodies, Singhal used

the Rayleigh-Plesset equation and a homogenous flow approach. Empirically tuned

model constants handled vapor generation and condensation. Their efforts produced

a robust and accurate model for high speed cavitating flows.

Other models incorporate heating effects. The variable density, viscosity, heat

capacity, and thermal conductivity that stem from high heat and pressure dramati-

cally affect the volumetric efficiency of an injector. Theodorakakos et al [61] found
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significant change in coefficient of discharge when compressibility and variation of

fuel properties were considered, as compared to constant property simulations. Us-

ing a parcel-based Lagrangian cavitation bubble model with a RANS CFD model,

they simulated high temperature and pressure flow through both sharp edged and

round tapered nozzles. Stochastic Monte Carlo approximation modeled the physical

processes experienced by the bubbles, with growth and collapse handled with the

Rayleigh-Plesset equation. Viscous heating was quantified with an energy equation

paired with the variable fuel properties. Dramatic changes in volumetric efficiency

were found due to the heating from wall friction and variable fuel processes.

With the goal of decreasing injection-to-injection and hole-to-hole variation in

multi-hole injectors, Mitroglou et al [38] coupled transparent real-scale nozzle exper-

imental results with CFD analysis. Experimentally observed string cavitation was

controlled through geometric design considerations yielding stable spray patterns at

the nozzle exit in resulting simulations. These led to controlled levels of spray atom-

ization with constant cavitation number but varying needle lift.

The stability of steady-state quasi-1D bubbly cavitating nozzle flow are explored

through bubble radius and flow speed evolution equations by Pasinlioglu [46]. After

perturbing these evolution equations, normal mode analysis of varying inlet conditions

show their model as stable for only very low wave numbers. All damping mechanisms

were lumped into viscous dissipation with a sole damping coefficient with a polytropic

law for bubble formation and collapse. They found increased stability when wall shear

stress was included.
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CHAPTER 3

PRELIMINARY WORK: VALIDATION CASES

To examine the current state of HRMFoam’s predicitive accuracy, four sets of

experimental results have been modeled. These include comparisons to: high tem-

perature cases, with increased vapor generation; large diameter nozzles with much

lower velocities than diesel injection simulations; a geometry with a large degree of

inlet rounding, and subsequently increased coefficient of discharge; and finally, a set

of cases that collapse across various working fluids to provide a general benchmark

for coefficient of discharge.

3.1 Elevated Temperature

To assess the preliminary performance of the model at elevated temperature (prior

to the validated use of an energy transport equation), HRMFoam was run with set-

tings mirroring the 1990 work of Reitz [51]. Reitz examined the high-speed nozzle

flow of water under flashing conditions, from 300K up to the saturation temperature

at his experimental pressure, 432K. In simulation, enthalpy values of 364E3 J/kg

(367K) through 645E3 J/kg (426K) were used to meet these conditions. The nozzle

was considered adiabadic and the flow laminar to isolate the effects of the model. The

physical geometry was a broader channel of 1.58mm diameter that contracted to an

L/D ratio 4 nozzle with a diameter of 0.34 mm.

The geometry was assumed axisymmetric for meshing purposes, and as such a

5° slice of the round injector was considered representative when paired with wedge

boundary conditions on the front and back faces. This wedge was meshed with 33,000
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Figure 3.1: Computational Mesh used in Reitz simulations. L/D = 4, 33,000 cells.
Flow is from left to right.

cells, as in Figure 3.1, with 78 cells across the throat diameter (Figure 3.2). The inlet

was very slightly rounded with an inlet radius to diameter ratio of 0.0125, to approxi-

mate realistic injector manufacturing processes that do not generate a perfectly sharp

inlet corner.

Reitz’s experiments produced measurements of mass flow rate and temperature.

Flash boiling decreases volumetric flow rate, and as temperature increases, the effect

becomes more pronounced (Figure 3.3). As the injection temperature becomes very

close to the fluid vapor temperature, the flow rate drops sharply as the entering fluid

becomes predominantly gas. HRMFoam was able to reproduce the experimental

trend, within 2.55% of the experimental flow rate on average (Figure 3.4) in the

evaluated temperature range. Increasing temperature yielded more divergent results,

as vapor production rate and condensation rate became more critical to the calculated

flow rate.
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Figure 3.2: Closeup of computational mesh used in Reitz simulations, inlet corner.
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Figure 3.3: Reitz’s [51] experiments and HRMFoam. Error rises rapidly very close to
the fluid’s saturated temperature.
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Figure 3.4: Comparison of simulation results to experimental data of Reitz [51].
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3.2 Low Velocity Flow

For pressure-driven nozzle flow, coefficient of discharge is a monotonically increas-

ing function of Reynolds number. Given the Reynolds Number of a room temperature

water flow, a prediction of coefficient of discharge can be made using the compiled

experimental data of Morgan [41] and James [26]. Lichtarowicz [35] organized the

work of these and other experimentalists into a series of plots separated by length

to diameter ratio; the plot shown in Figure 3.6 contains Lichtarowicz’ compiled data

for nozzles of L/D ratio 4, and presents data from nozzles ranging in size from 0.032

inches to 0.504 inches. These large diameters (relative to real-scale diesel injectors)

translate to extremely low fluid velocities, especially at low Reynolds number.

A number of HRMFoam cases were run under the experimental conditions of

Morgan and James, with three sets of settings. The Re 32, 71, and 9945 cases

(see Figure 3.5) matched Reynolds number but not physical size. Simulation fluid

velocities were closer to diesel injection velocities in these cases. The Re 5, 14, and

112 cases use Morgan’s experimental nozzle diameter of 0.125 inches and retain the

very low experimental velocity, and the Re 632 case utilizes James’ nozzle diameter

of 0.502 inches. All cases utilized the mesh from the preceding Reitz validation.

Figure 3.5: HRMFoam low velocity flow results, by Reynolds Number.

HRMFoam’s coefficient of discharge predictions are overlaid with Lichtarowicz’s

data in Figure 3.6. All of the runs were again assumed laminar. HRMFoam predicted

coefficient of discharge in these cases with up to 1.4% accuracy (Figure 3.5). Predic-

tion error was small for Re = 32-632, but increased dramatically at lower Reynolds
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number, in the region of Re = 2.3-14. This is to be expected at very low Reynolds

number, as creep flow depends heavily upon the diffusion terms of Navier-Stokes, and

HRMFoam’s PISO algorithm assumes advection-dominant flow. For Reynolds num-

bers above roughly 5000, Lichtarowicz’s data show an asymptotal approach to a CD

of 0.8, which HRMFoam underpredicts by roughly 10%. HRMFoam does, however,

predict the behavior of the experimental curve at very low and very high Reynolds

numbers.

Figure 3.6: Lichtarowicz’s compiled experimental results [35]. HRMFoam results
shown as squares, color coded by percent error; See Figure 3.5. Figure from Lichtarow-
icz [35].
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3.3 Inlet Rounding

As previously discussed, the degree of rounding applied to a nozzle’s inlet ori-

fice can strongly influence its overall mass flow rate and velocity profile. Increased

rounding eases the transition from plenum to nozzle throat, and allows the flow to fill

more of the channel. This translates to increased coefficient of discharge as rounding

becomes more pronounced [55] (Figure 3.7).

Figure 3.7: Inlet rounding’s effects on coefficient of discharge. Increasing rounding
smooths the flow and increases CD. Figure from Schmidt [55].

HRMFoam was used to reproduce the coefficient of discharge data for Torres’ [62]

two-stage nozzles. Torres conducted tests using two upstream pressures, 10 MPa and

20 MPa, with nozzles that exhibited a high degree of inlet rounding and little-to-no

vena contracta region in the throat. Varying the pressures downstream of the nozzles

led to a range of flow rate data, shown in Figure 3.8 [62]; the plateau in flow rates

with increasing pressure difference indicates the onset of choked flow.

The injector geometry (Figure 3.9) was meshed as a 5° wedge as in the preceding

Reitz validation, with roughly 16,000 cells. The inlet orifice was rounded with an
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Figure 3.8: Torres’ raw flow rate data. Cases are organized by upstream pressure.
Figure from Torres [62].

Figure 3.9: Mesh used for Torres validation cases. Flow is from left to right; note
two-stage nozzle. Mesh includes 16,000 cells.

inlet radius to diameter ratio of 0.25, with 20 cells across the throat and 40 across

wider second stage diameter.

With this high level of rounding, HRMFoam was able to very accurately reproduce

the results of Torres’ cases in the cavitating region. For Torres’ 10 MPa upstream
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Figure 3.10: Closeup of mesh used for Torres validation cases.

pressure cases, HRMFoam was accurate to within 0.53% of the experimental coeffi-

cient of discharge (Figure 3.11); for the 20 MPa cases, within 0.46% (Figure 3.13).

Beyond K values of 1.7 (roughly the onset of the non-cavitating region), predicted

mass flow rates exceeded their Bernoulli-equation-calculated counterparts, surely a

non-physical result. Those results are regarded here as outliers. The coefficent of

discharge data is tabulated in Figures 3.12 and 3.14.
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Figure 3.11: Comparison between various experimentalists [33, 60, 21, 58], Nurick’s
theory line[44], Torres’ 10 MPa nozzle experiments [62], and HRMFoam.

Figure 3.12: HRMFoam tabulated data, as compared to the data of Torres [62] at 10
MPa.
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Figure 3.13: Comparison between various experimentalists [33, 60, 21, 58], Nurick’s
theory line[44], Torres’20 MPa nozzle experiments [62], and HRMFoam.

Figure 3.14: HRMFoam tabulated data, as compared to the data of Torres [62] at 20
MPa.
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3.4 Coefficient of Discharge Benchmark Comparison

Coefficient of discharge CD is positively correlated with pressure ratio K in the

cavitating region. Nurick proposed a model that collapsed a great deal of experimental

nozzle output flow rate data based on his experimental observations using sharp-edged

nozzles and water. As the reduction in cross-sectional area is dependent only upon

pressure ratio K, this relation holds for various temperatures and working fluids with a

given L/D ratio [44]. Figure 3.15 is a compilation [12] [56] of experimental data points

from various experimentalists plotted with the Nurick model (labeled “Theory”).

Figure 3.15: Nurick Theory vs. Experiments. Data are plotted on log-log axes from
[44, 30, 24, 50, 45, 3, 21, 58]. Figure from [12, 56].

Because much data exist to confirm the accuracy of Nurick’s theory [44, 30, 24, 50,

45, 3, 21, 58], Nurick’s coefficient of discharge predictions have been used as a quality

metric in the present work. HRMFoam’s predictions are compared with Nurick’s
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theory below (Figure 4.2), with simulations conducted using a diesel fuel surrogate at

room temperature. The data show reasonable agreement in the cavitating region but

diverges from the theory at higher K values, averaging 8.02% error across the curve

(Figure 3.17). This error forms the basis for the parameter tuning study to follow.
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Figure 3.16: State of system before optimization.

Figure 3.17: Tabulated CD vs. K for comparison of HRMFoam to Nurick [44].
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CHAPTER 4

PRELIMINARY WORK: PARAMETER TUNING STUDY

In addition to HEM’s conservation of mass, momentum, and energy, HRM includes

a differential equation describing the rate at which local dryness fraction x (the ratio

of vapor to liquid in a cell) returns to equilibrium;

Dx

Dt
=
x− x̄
Θ

(4.1)

where x̄ is the unconstrained-equilibrium dryness fraction and Θ is the relaxation

time. As Θ approaches 0, the HRM acts like HEM, with an instantaneous return to

equilibrium conditions. As Θ becomes large, the quality will not change, as in frozen

flow.

The behavior of the vapor generation rate is central to HRMFoam, as in Equa-

tion 4.1. Local relaxation time determines this vapor generation rate, and is diffi-

cult to measure directly. The void fraction and pressure distribution measurements

conducted by Reocreux [52] provide an experimentally derived expression for the

relaxation time Θ, as presented by Downar-Zapolski [15]:

Θ = Θ0ε
−0.54ϕ−1.76 (4.2)

where Θ0 = 3.84× 10−7 seconds, ε is void fraction, and ϕ is the non-dimensional

pressure difference, computed as

ϕ =

[
Psat(Tin)− P

Pcritical − P (Tin)

]
(4.3)
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Together, these equations yield relaxation time as a strictly decreasing monotonic

function of void fraction and non-dimensional pressure difference with an exponential

tendency toward equilibrium conditions. Relaxation time, and subsequently vapor

generation rate, is governed by three parameters: the time factor Θ0, the exponent

of the void fraction ε, and the exponent of non-dimensional pressure difference ϕ.

These are referred to in the following as Theta0, VoidFrac, and pNonDimPress. For

Downar-Zapolski’s analysis of Reocreux’s raw data, see Figure 2.3 in Chapter 2.

Physically, Theta0 cannot be negative, as it is a time in seconds. VoidFrac and

PNonDimPress are each negative. Increasing VoidFrac translates to greater vapor

surface area, which yields greater heat transfer rate and smaller relaxation time,

hence its negative exponent. PNonDimPress accounts for the decrease in relaxation

time when the pressure difference is such that phase change occurs.

Originally calculated for water in Reocreux’s work [52], the parameter values

derived are not appropriate for cavitating diesel fuel. They provide the starting point

to optimize the system parameters for the diesel surrogate used in the present work.

While the differences in coefficient of discharge are not seemingly large, this error

propagates as temperature increases. Moreover, when compounded by uncertainty in

geometry measurements, working fluid surrogate density error, turbulence modeling,

mesh resolution effects, and more, it becomes imperative to accurately quantify what

can be accurately quantified.

Methodology

Computational Approach

Ideal parameter values would yield accurate results throughout the range of pres-

sure ratios. As such, seven different pressure set-ups were used, evenly distributed

throughout the K domain (Figure 4.1). All were set to enthalpy values correspond-

ing to a temperature of 306K, to ensure cavitating (not flash boiling) conditions.
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For expediency’s sake, only the four lowest K values (K1.05, K1.2, K1.4, K1.6) were

updated and perturbed at each step.

Figure 4.1: Pressure values for parametric study, by case. Upstream pressure held
constant, downstream pressure adjusted by case.
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Figure 4.2: State of system before optimization.

The remaining K value cases were then updated with the new parameters, and

their residuals examined. This was done with the knowledge that vapor generation

rate affects cavitating cases (those below K = 1.7) much more heavily than non-

cavitating cases. Error from K = 1.7 to K = 3 is equally likely to be due to a number
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of other factors, not limited to viscosity, density, wall roughness, and Reynolds number

effects such as turbulence. For the massive decrease in computational cost, there is

little error introduced by this assumption. The initial coefficient of discharge values,

obtained with the original water-derived vapor equation parameters, can be seen in

Figure 4.2.

Seven 14-hour simulations were conducted for the initial baseline values, three

simulations to test the domain limits, twelve for the initial gradient calculation, six-

teen for the first Hooke-Jeeves step, sixteen for the second Hooke-Jeeves step, and

finally four to examine the larger K values with the final parameters in place. The

59 simulations necessary were conducted on the Mach, Swordfish, and Puffer compu-

tational platforms in the Multiphase Flow laboratory. The physical geometry of the

injector was discretized using 24,000 cells (see Figure 4.3). Flow is from left to right,

with the upstream plenum represented by the meshed area outside the nozzle throat.

Figure 4.3: Overview of computational grid.

There is increased mesh resolution at the inlet corner (Figure 4.4) and near the

walls of the throat to attempt to resolve boundary layer effects much smaller than

other flow structures. The computational domain extends past the end of the nozzle

to retain the physicality of the outlet orifice; a sharp boundary there would not be

physically accurate as periodic vortex shedding often occurs at the outlet.
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Figure 4.4: Increased mesh density at inlet corner.

The Least-Squares Algorithm

The method of iterative least squares was used to minimize the square sum of the

error with respect to the expected experimental values of mass flow rate. Because the

error function is dependent upon the parameters themselves and the sensitivity matrix

φ (also dependent on the parameters), the function to be minimized is nonlinear,

requiring an iterative solution method. Formally, the iterative least-squares is defined

as [36],

VN =
1

N

N∑
t=1

1

2
ε2(t, θ) (4.4)

Where ε is the error function, t is time, and θ is the vector of parameters to optimize.

The gradient and error function are defined as,

V ′N =
1

N

N∑
t=1

ψ(t, θ)ε(t, θ) (4.5)
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ε = y(t)− y(t) (4.6)

with ψ as the gradient of the prediction with respect to the parameters and time, and

ε defined as the coefficient of discharge value for a given iteration less the expected

Nurick-theory value. In the current work N represents the number of cases, and Z the

associated data. The V ′N term is approximated by the sensitivity matrix of the system,

which measures system response to changes in the input parameters, multiplied by

the current iteration’s error. Each new iteration’s parameters are then

θi+1
N = θiN − µiN [Ri

N ]−1 V ′N(θiN , Z
N) (4.7)

where θiN is the ith iteration, µiN the step size. [Ri
N ]−1 is a square matrix that changes

based on the chosen numerical method; when combined with V ′N , this yields change in

the direction of decreasing error, incremented in proportion to the current error. The

step size (or relaxation factor) mitigates this derived step size for stability. Choosing

[Ri
N ]−1 = I, the identity matrix, makes Equation 4.7 the steepest-decent method [36].

After calculating the gradient, the proper direction of tuning for each parameter was

established.

Steepest Descents

Before performing the first step, three exploratory simulations were performed; one

with each parameter halved, doubled, and multiplied by six. None of the exploratory

cases exhibited signs of non-physical phenomena, and did not crash. The parameter

domain within these bounds was assumed stable. The prediction gradient ψ was

then calculated by perturbing each parameter by 10% and comparing the change in

parameter value to the change in output flow rate, as seen in Table 4.1. Cases are

separated into perturbed cases (labeled by the parameter adjusted) and the baseline

cases, which were calculated with the iteration-current benchmark values.
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Case Name Theta0 VoidFrac pNonDimPress
Base 3.84E-7 -0.54 -1.76

1st Perturbation 4.22E-007 -0.594 -1.94

Table 4.1: Base case and initial gradient calculation parameter values.

The gradient calculations predicted reasonable values for each of the Theta0 and

pNonDimExp cases, but suggested a change of 64000% to VoidFrac (Figure 4.5). This

is a spurious result - steepest descents is known to be problematic in the neighborhood

of local minima, and this was certainly the case. A smaller perturbation would almost

certainly have yielded more reasonable results, but in the interest of time a more stable

method was selected; a method highly sensitive to step size was deemed sub-optimal

with long run times.

Figure 4.5: Steepest descents tabulated data

Hooke-Jeeves

A modified version of the Hooke-Jeeves algorithm was selected for its stability

and efficiency coupled with its lack of gradient use. Because no gradient calculation

is required at each step, it ideally provides more stability near a minima. Joe Bliss

[5] successfully used Hooke-Jeeves to tune the vapor generation parameters for flash

boiling.

Hooke-Jeeves begins with a baseline point. Similar to how the gradient was calcu-

lated in the previous section, each parameter is perturbed and the function evaluated.
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Here, each parameter was perturbed by 100%, as called for by the standard Hooke-

Jeeves method. If the perturbation results in a reduction of the error function, the

method takes a large step in that direction, taking the perturbation case result as

the new baseline. A new set of perturbation cases are examined from this new base

point, and the process repeats. This is carried out until a step yields an increase in

the error function, and the step size is then reduced. This continues until a sufficient

error threshold is reached.

Because of the run time involved with each case, and because it was known from

the gradient method that the parameters were close to the minima (within the bounds

of the exploratory search), the large step size called for by Hooke-Jeeves was reduced.

Normally, Hooke-Jeeves takes an acceleration step, as

θi+1
N = 2θiN − θi0 (4.8)

Instead, at most steps were doubled, then when further steps did not decrease

error, the step size was halved per iteration. Step size was also adjusted in cases

where the derived step size would yield a value that would not make physical sense.

This yielded decreasing error with each step, and is further justified by the data

(Figure 4.6).

Figure 4.6: VN Values tabulated across each case.

The parameters associated with each step are contained in Figure 4.7. The case

notes explain the results of each step. Steepest Descents was used from Base to Step

1, where the VoidFrac prediction was spurious. The exploratory “doubled parameter”

step was used as the baseline for the first Hooke-Jeeves step. Doubling each value
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yielded a decrease in error in Theta0 and pNonDimExp, so perturbed values were ac-

cepted as the new baseline for those cases. For VoidFrac the error function increased,

so the parameter was tuned in the opposite direction, at half the step-size (because

the value must remain negative to retain physicality). The second Hooke-Jeeves step

decreased the error function further. Its perturbations (more negative in Theta0 and

pNonDimExp, less negative in VoidFrac) yielded the best values thus far.
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Results and Discussion

Figure 4.7: Parameter Values separated by iteration and search step.

Figure 4.8: Coefficient of Discharge values by iteration.

The final (current iteration ideal) parameter values were Theta0 = 9.6E-7, Void-

Frac = -0.135, and pNonDimExp = -4.40. These parameters returned an 80% decrease

in the residual for the K1.05 case (most affected by vapor). As expected, the cases

with pressure ratio K values larger than 1.6 showed essentailly no change, even with

drastic changes to the parameters. The cases with large amounts of cavitation (K1.05,

K1.2, K1.4) showed considerably more change than those above 1.7, with final resid-
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uals cut down by 40.1%; over all the K values evaluated, the parameters led to a

15% decrease in overall error function value. Plotted against the Nurick Trend, these

values can be found in Figure 4.8, and a closeup on the changing values in Figure 4.9.

Tabulated, the coefficient of discharge data is Figure 4.10. Figures 4.8 and 4.9 show

the progression of the coefficient of discharge values at each step of tuning. It should

be noted that there are other sources of error beyond vapor generation, and that the

current study can only go so far to mitigate that error.

Figure 4.9: Close-up of coefficient of discharge values by iteration.
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Figure 4.10: Tabulated coefficient of discharge data, by iteration.
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CHAPTER 5

HEAT TRANSFER: EXPERIMENTAL CASES AND
COMPUTATIONAL IMPLIMENTATION

Considering a fuel injector adiabatic is a reasonable simplifying approximation

in simulation. With a prescribed inlet temperature, known pressure conditions, and

experimentally validated vapor generation rates, flow rates near those of physical

injectors can be expected. However, within the injector an engine-heated wall is

a source of added enthalpy, causing boiling to occur along the injector’s surface at

higher temperature [6]. In HRMFoam, the ability to model non-adiabatic flows would

yield a more rigorous prediction tool at elevated temperature and provide a more

complete picture of fuel vaporization. To that end, the present work will implement

and evaluate the energy transport equation in HRMFoam.

Because enthalpy transport from a heated surface to a liquid coolant describes

the cooling of nuclear reactors, heat sink applications, and others, basic heat transfer

in the context of internal channel flow has been the subject of numerous studies [34]

[6] [22]. For our purposes, tube heat transfer experiments represent straightforward

validation cases for the transport of enthalpy in HRMFoam. When considering the

specific case of heat transfer in tubes, there are two canonical boundary conditions

[25] [29]. With the specified heat rate boundary condition, a heat flux is prescribed

per unit tube length. This is a reasonable mathematical description for heat caused

by electric resistance, by radiant or nuclear heating, or in heat exchangers with fluids

of comparable fluid capacity rates [29]. In contrast, the specified surface temperature

boundary condition is appropriate in heat exchangers when there is a disparity in

heat capacity between the fluids [29]. The present work examines experiments by
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Allen [1] and Boelter [6] to validate enthalpy transport through the specified heat

flux and specified surface temperature boundary conditions.

5.1 Transport of Energy and HRMFoam

As formulated by White [66], the energy equation is,

ρ
Dh

Dt
=
Dp

Dt
+ O· (kOT ) + Φ (5.1)

where ρ is density, h is enthalpy, p is pressure, k is conductivity, T is temperature,

and Φ is the dissipation function. The dissipation function Φ represents the viscous

stresses; because viscosity cannot add energy to the system, the Φ matrix is positive

definite [66]. For now, the viscous stress term will be neglected for simplicity. We

also neglect the molecular diffusion of heat, O· (kOT ). At high Reynolds number,

where HRMFoam is generally used, this term is negligible compared to turbulent

heat transport. Confining the discussion to the expanded material derivative terms

on the left hand side, we include continuity multiplied by enthalpy h (in essence

adding zero),

ρ
∂h

∂t
+ ρu·Oh+ h

(
∂ρ

∂t
+ O· ρu

)
(5.2)

Combining terms, we arrive at our strong conservation form of the energy equation,

∂ρh

∂t
+ O· ρuh =

Dp

Dt
(5.3)

Using Equation 5.3 as a starting point, we decompose instantaneous pressure into

its mean (p̄) and fluctuating (p′) components, and the instantaneous enthalpy and

velocity into their mass-averaged (h̃, ũ) and fluctuating (h′′, u′′) components,
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p = p̄+ p′

h = h̃+ h′′

u = ũ+ u′′

We avoid decomposing density ρ and invoke the mass average to circumvent the clo-

sure problems associated with time-averaged products of fluctuating terms. Without

knowing the degree of correlation between ρ′ and u′′, etc, there are terms that are

difficult to eliminate when products with density arise. The mass average is defined

as [32] [67],

ũ =
1

ρ̄
lim

T→+∞

∫ t+T

t

ρ(τ)ui(τ)dτ =
ρu

ρ̄
(5.4)

Applying the mass average decompositions, the left-hand side of Equation 5.3 be-

comes,

∂(ρ)(h̃+ h′′)

∂t
+ O· (ρ)(ũ+ u′′)(h̃+ h′′) (5.5)

Note that we do not decompose either density term. Expanding terms,

∂(ρh̃+ ρh′′)

∂t
+ O· (ρũh̃+ ρũh′′ + ρu′′h̃+ ρu′′h′′) (5.6)

To obtain the Farve-averaged heat equation, we apply a time average to Equation

5.6 in the procedure of Wilcox [67], keeping in mind that this is still only the left-

hand side. Several of these terms can be eliminated; recall the definition of the

mass-averaged velocity,
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u = ũ+ u′′ (5.7)

Multiplying Equation 5.7 through by ρ and applying a time average yields,

ρu = ρ̄ũ+ ρu′′ (5.8)

Equation 5.4 in terms of Reynolds averaging [67] is,

ρ̄ũ = ρu (5.9)

Based on Equation 5.9, we can then say:

ρu′′ = 0 (5.10)

With this, we apply a time average to Equation 5.6. When multiplied by ρu′′ or ρh′′

and then time averaged, a mass-averaged mean term (ũ or h̃) acts as a coefficient to

the known average value (Equation 5.10), resulting in zero. The left-hand side of the

energy equation becomes,

∂ρ̄h̃

∂t
+ O·

(
ρ̄ũh̃+ ρu′′h′′

)
(5.11)

Turning our attention to the right side of Equation 5.3, we expand the material

derivative term. The right hand side has no term that might produce problematic

correlated fluctuation terms that might also be avoided by a Farve Average, so only

Reynolds Averaging is necessary. We decompose p and h in time, yielding,

∂(p̄+ p′)

∂t
+ (ū+ u′)·O(p̄+ p′) (5.12)

Eliminating the time-averaged fluctuating terms without possible correlation issues

results in,
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∂p̄

∂t
+ ū·Op̄+ u′·Op′ (5.13)

Combining the left and right-hand sides yields the Farve-averaged energy equation,

∂ρ̄h̃

∂t
+ O· ρ̄ũh̃ =

∂p̄

∂t
+ ū·Op̄+ u′·Op′ − O· ρu′′h′′ (5.14)

The turbulent dispersion term O· ρu′′h′′ is modeled as O·αtotalρOh, where αtotal is

the total diffusivity. The formulation of αtotal will be described shortly. The Farve-

averaged energy equation is implemented in the current HRMFoam framework.

Two modifications have been made in the implementation of Equation 5.14. The

u′·Op′ term is small below Mach 1, and can be safely regarded as zero at low Mach

number [71]. Because most HRMFoam applications involve velocities below the speed

of sound, this is a reasonable concession. Additionally, a viscous dissipation term is

included, derived from the viscous terms of the stress tensor τij [66],

τij = −pδij + µ(
δui
δxj

+
δuj
δxi

) + δijλO·U (5.15)

where µ is the dynamic viscosity, λ is the coefficient of bulk viscosity, and δ is the

Kronecker delta. The hydrostatic pressure term is not included in the viscous stresses.

Assuming incompressible flow (λO·U = 0), the viscous dissipation term added to the

right hand side of Equation 5.14 is,

µeff ((OU + OUT )·OU) (5.16)

This formulation is normally used for laminar flow. However, because the stress tensor

τij comes from the momentum equation and includes the effective dynamic viscosity

µeff , we include it here for the sake of consistency in our treatment of energy.

To better handle two-phase flow and the presence of non-condensible gas, the

definitions of heat capacity Cp and subsequently laminar thermal diffusivity α have
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been revised as Cp,mix and αmix. The definitions of vapor fraction and dryness fraction

x are unclear in the presence of a liquid working fluid, vapor working fluid, and a

quantity of non-condensible gas. Quality x represents the ratio of working fluid in

the vapor phase to working fluid in the liquid phase in a given computational cell by

mass, as,

x ≡ mvapor

mworkingfluid

(5.17)

No measure of non-condensible gas is included in x. To that end, y is the ratio of gas

to total mass (liquid working fluid, vapor working fluid, and non-condensible gas) in

a cell, as,

y ≡ mgas

mtotal

(5.18)

With these definitions in mind, the total laminar diffusivity used in the transport

of enthalpy is calculated from the heat capacity of the total mass in a cell. This is

computed as,

Cp,mix = (1− x)(1− y)Cp,liquid + x(1− y)Cp,vapor + yCp,gas (5.19)

This mixture heat capacity Cp,mix reflects the ratio of the phases and gas by total

mass present. The laminar diffusivity for the mixture is then,

αmix =
K

Cp,mix
(5.20)

Where K is thermal conductivity. The total diffusivity used in calculating enthalpy

transport is the sum of the turbulent diffusivity αt and laminar thermal diffusivity

αmix.
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5.2 Enthalpy Boundary Conditions

5.2.1 Specified Heat Flux: Allen Experiment

To validate Equation 5.14, we begin with the specified heat flux boundary condi-

tion and Allen’s experiments. In Allen’s [1] work, single-phase liquid water was passed

through a long pipe heated electrically with a constant specified heat flux. After pass-

ing through an adiabatic entrance pipe of L/D 96 to reach hydrodynamic equilibrium,

the fluid reaches a heated test section of diameter 0.75 inch and L/D 30. The test

section was heated by electric current and insulated thermally at the outer wall. The

system was kept at 75 psia (0.517 MPa). A control point was defined 22 diameters

from the entrance of the test section to provide a point of reference for measuring

relevant fluid quantities. At the control point, Reynolds number was 50,000, Prandtl

number was 7, and wall-to-bulk-flow temperature difference was 24°Fahrenheit (F).

Over the length of the heated section, bulk fluid temperature rise was 5.87 °F, with

fluid entering at 59.65 °F (288.515K).

Allen quantified his results through heat transfer coefficient h, calculated as,

h =
q′′

tw − tb
(5.21)

where q′′ is the heat flux, tw and tb are the temperature of the wall and bulk flow,

respectively, for each axial location examined in the pipe. Allen evaluated and av-

eraged the heat transfer coefficient along the last six diameters of the test section

and used the computed href to normalize the heat transfer coefficient at various ax-

ial positions along the pipe. Plotting these against the analytical results of Sparrow

[59] and Deisler [14], Allen’s results show an asymptotic approach to the reference h

from the entrance to the outlet (Figure 5.1). The present work seeks to replicate the

experimental bulk temperature rise and heat transfer coefficient curve.
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Figure 5.1: Local heat transfer coefficient from Allen’s experiments plotted against
Sparrow [59] and Deisler [14]. Figure from Allen [1].

5.2.2 Numerical Approach: Allen

Allen prescribed a constant heat flux over a known area, and reported the fluid’s

bulk temperature rise. In the experiment, the pipe surface temperature was measured

via a set of 30 thermocouples attached to the outside of the tube. To replicate the

conditions of Allen’s experiment, the experimental heat flux into the pipe is calculated

as the total heat added (Qin) over the surface area of the pipe. From the bulk

temperature rise, pipe surface area, and mass flow rate (ṁ), the heat flux q′′ is [25],

q′′ =
Qin

πDL
=
ṁCp(Tout − Tin)

πDL
(5.22)

where D is the pipe diameter, L is the pipe length, Cp is the heat capacity at constant

pressure. The outlet and inlet temperatures are Tout and Tin. To find the temperature

gradient over the pipe wall due to this heat flux, we use Fourier’s law [25],
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q′′ = −kdT
dx

(5.23)

where k is thermal conductivity and dT
dx

is the temperature gradient. Given the inlet

temperature and the linear rise in bulk fluid temperature (Fig. 5.2), the average bulk

temperature is known analytically. For a given heat flux, the bulk temperature at

some distance x from the inlet is [25],

Tbulk(x) = Tin +
πDq′′x

ṁCp
(5.24)

Figure 5.2: Experimental temperature and local heat transfer coefficient plotted with
axial position along the heated pipe. Note the linear rise in bulk temperature and
shape of local heat transfer coefficient curve. Figure from Allen [1].

A new boundary condition was implemented to properly address the prescribed

heat flux. Under these conditions, a bulk rise of 5.87°F over the pipe length corre-

sponds to a constant heat flux of 315,943 watts per square meter. Because the heat

flux is known and constant, enthalpy gradient through the wall is calculated through

local total diffusivity αtotal as,

dH

dx
=
q′′Cp
k

=
q′′

αtotal
(5.25)

where αtotal is the sum of the laminar and turbulent α values. With the assumption

that the enthalpy calculated at each near-wall cell was the enthalpy of the wall itself,
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the “sample” OpenFOAM utility was used to extract wall enthalpy values. These were

used to calculate heat transfer coefficient as per Allen (using Equation 5.21), using

the bulk temperature values from Equation 5.24. Due to the curve’s sensitivity to

turbulent diffusivity, several turbulence models were used for completeness: kEpsilon,

realizable kEpsilon, and Spalart-Allmaras.

Allen’s work featured a long section of unheated pipe before the test section to en-

sure hydrodynamically developed conditions. At the experimental Reynolds number

of 50,000, turbulent pipe flow reaches hydrodynamic equilibrium 26.7 diameters from

a pipe inlet [48]. The modeled domain of 30 diameters is sufficiently long for this

purpose. Simulations were allowed to reach steady state to create hydrodynamically

developed conditions at the outlet. These outlet conditions were then transposed to

the pipe inlet, emulating the long approach section of pipe in the experimental set-up

with a minimum of computational cells. Because the inlet and outlet cell indicies are

numbered similarly, translation between patches is straightforward.

Figure 5.3: Streamwise velocity vs. transverse distance. Velocity is at minimum at
the wall (y/r = 1).

Fully-developed turbulent pipe flow adheres to a log-law velocity profile; the ini-

tially prescribed inlet velocity is shown in Figure 5.3. Best initial guesses for turbu-

lent kinetic energy k, turbulent dissipation ε, and the viscosity-like quantity ν̃ are

described in the following sections. Once temporal steady-state was achieved, the

outlet conditions for velocity, k, ε, ν̃, kinematic viscosity µ, and eddy-viscosity µt
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were transplanted to the pipe inlet, then allowed to run to steady state again. Until

the turbulent diffusivity was no longer spatially developing between the inlet and

outlet (as in Figure 5.4), the process of moving outlet conditions to the pipe inlet was

repeated. Note also that each field data figure depicts the entire pipe length; a scale

factor of 0.1 has been applied.

Figure 5.4: A converged turbulent diffusivity αt field. Once αt no longer develops
spatially, simulations were considered converged. Figure from kEpsilon model.

The velocity, pressure, and vapor fraction fields were not strongly affected by the

choice of turbulence model. For each, velocity was an average of 2.871 m/s over

the inlet and outlet patches, with a maximum of 3.32 m/s (Figure 5.5). Pressure

drop through the test section was slight at 3 kPa due to the no-slip walls boundary

condition on velocity. The fluid was single-phase throughout. The performance of

each model differed predominantly in the prediction of αt and distribution of enthalpy

in the flow.
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Figure 5.5: Allen simulation velocity, pressure, and vapor fraction. These fields re-
main largely unchanged between the three turbulence models. (Top) Velocity in-
creases rapidly spanwise, while (Middle) pressure drops linearly between the inlet
and outlet. (Bottom)Vapor fraction is constant throughout the flow.
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5.2.3 Specified Surface Temperature: Boelter Experiment

Next we turn to a second set of experiments performed by Boelter et al [6]. Boel-

ter’s [6] work yielded temperature and pressure drop data for the flow of liquid water

through a heated vertical drawn steel tube, as well as heat flux density and mass

flow rate readings. High pressure, high temperature water was tested both with and

without surface boiling.

Figure 5.6: Tube dimensions for a typical test section used in the UCLA water exper-
iments [6]. Note the thermocouple locations positioned in intervals along the tube’s
length.

The experimental apparatus forced fluid upward through an L/D 100 section of 1
4

inch diameter pipe, electrically heated along its length. The dimensions of a typical

test section are visible in Figure 5.6, with thermocouples positioned as noted. Most

tests were conducted at 2000 psia (13.8 MPa), at temperatures varying from 461K
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Figure 5.7: Boelter high-temperature, high-pressure water experimental data [6].

up to 589K. Varying quantities of nitrogen gas were dissolved in the water, with runs

including up to 900 cc N2 added per liter. For the purposes of the present work we

consider a basic, no surface boiling, de-gassed water run.

Figure 5.7 shows the wall and fluid temperature profiles for run #448 [6]. The bulk

fluid temperature begins at 398.93°F (477K), increasing to approximately 490.73°F

(528K) by the heated section’s exit. Equilibrium properties at these conditions in-

dicate no vapor at the entrance or exit, providing a straightforward single-phase

validation case.

5.2.4 Numerical Approach: Boelter

With a full pipe length of 100 diameters, simulating the entire test section used

by Boelter would be cost-prohibitive. Instead, the region of the first three points of

the calculated inside wall temperature was used, from 1.282 inches (where heating

begins) to 9.622 inches (the third data point in Figure 5.7). This leaves an 8.34 inch
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(0.211 meter), L/D 36.3 region of pipe, 0.2289 inches (0.0058 m) in diameter. The

mesh was the same used in the Allen simulations, a 5° wedge comprised 104,000 cells,

scaled appropriately.

Fluid entering the domain was set to the bulk flow temperature at 1.282 inches

from the pipe entrance, 481.8K. The wall’s steady state temperature was 541K at

the inlet, increasing axially to 578.8K at the outlet with the profile shown in Figure

5.7. Based on the Reynolds number of 336,000, the inlet velocity was set to a log-law

profile, with an average of 8.8 m/s. Fluid entering through the inlet boundary was

entirely liquid. kEpsilon was used for the calculation of turbulent diffusivity αt, and

therefore enthalpy transport. Once steady state was achieved, the outlet conditions

were moved to the pipe inlet, much like the Allen simulations.

5.3 Turbulence Models

Three turbulence models were applied to the Allen and Boelter simulations. The

kEpsilon and realizable kEpsilon models were used for both sets of experiments,

while Spalart-Allmaras was used only for the Allen case. The three models differ

in their calculation of turbulent diffusivity αt, changing the transport of enthalpy in

the domain.

5.3.1 kEpsilon

The kEpsilon turbulence model solves for the transport of turbulent kinetic energy

k and turbulent dissipation ε. Initial estimates of turbulence quantities at the inlet

were made for k, ε, and turbulence intensity I. Turbulence intensity represents the

ratio of mean flow velocity fluctuation to the mean flow velocity, expressed as a

percentage. At the core of a fully developed internal flow, the turbulence intensity I

is dependent upon Reynolds number, and at the pipe inlet is approximately [2],
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I = 0.16Re−
1
8 (5.26)

For our Reynolds number of 50,000, the flow fluctuates by approximately 4%. Tur-

bulent kinetic energy and dissipation rate are empirically then [2],

k =
3

2
(ūI)2 (5.27)

ε =
0.1643k1.5

l
(5.28)

where ū is the mean flow velocity, and l is the characteristic length of a given flow.

For internal channel flow, the diameter of the pipe is used for l. The eddy-viscosity

is calculated as,

µt =
Cµρk

2

ε
(5.29)

where Cµ is a model constant. The turbulent diffusivity is then,

αt =
µt
Prt

(5.30)

where Prt is the turbulent Prandtl number, assumed unity in kEpsilon.

Note that the kEpsilon value of Cµ (0.09) makes the model applicable to a variety

of flows. While not ideal for every flow, it is most accurate for the inertial sublayer

in a developed boundary layer. In the near-wall region below non-dimensional values

of y+ values of 50 (which will be detailed later in the text), smaller values of Cµ

are more appropriate [48]. For this reason, kEpsilon is known to be suboptimal in

simulating the viscous near-wall region.
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5.3.2 Realizable kEpsilon

Realizable kEpsilon is the standard kEpsilon model with altered handling for

eddy-viscosity, along with changes to the dissipation calculation using mean-square

vorticity fluctuation [19]. Whereas Cµ is a model constant under kEpsilon, it is

variable in Realizable kEpsilon. This ensures that both the normal stresses and

the Schwarz inequality for the shear stresses remain positive (realizable) [19]. This

changes the eddy-viscosity µt, thereby affecting αt.

5.3.3 Spalart-Allmaras

Spalart-Allmaras is a single-equation model that solves for a term identical to

turbulent viscosity except in the viscous near-wall region, ν̃ [2]. Turbulent viscosity

is computed from ν̃, which is initialized at the pipe inlet as,

ν̃ =

√
3

2
ūIl (5.31)

Turbulent viscosity is then,

µt = ρν̃fv1 (5.32)

where fv1 is the viscous damping function, determined by a ratio of ν̃, kinematic

viscosity ν, and a model constant. While Spalart-Allmaras is intended for external

aerodynamic flows, it performs well in the present work.
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CHAPTER 6

COARSE MESH APPROACH

Each experiment was first examined on a coarse grid. Due to the low resolution,

subgrid-scale near-wall approximations are necessary to ensure accurate prediction.

The velocity and thermal boundary layers develop rapidly outward from the wall, and

require special consideration related to the minimum mesh resolution.

6.1 Near-wall Boundary Layer Modeling

Boundary layers are the viscous layers that originate from solid surfaces in fluid

flows. The mean flow is predominantly parallel to the surface in the downstream

direction. Velocity changes spanwise with location in the boundary layer. Non-

dimensional normal distance from the wall y+ is defined as,

y+ =
yut
ν

(6.1)

where y is the physical distance from the wall, ut is the shear velocity, and ν is the

kinematic viscosity. Alternatively, y∗ is sometimes used as the non-dimensional wall

distance, defined as,

y∗ =
ρC

1
4
µ k

1
2
p yp

µ
(6.2)

where yp is the physical distance from the surface to the nearest cell center.

The rapid changes in velocity that occur normal to the wall within the boundary

layer are classified into stratified layers, grouped by regions of y+ (Figure 6.1). In the
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Figure 6.1: Boundary Layer Regions by non-dimensional wall distance and Reynolds
number. Distance to the wall y is non-dimenionalized by the channel half-width δ in
pipe flow. The entire inner layer exists between the wall and 10% of the distance to
the centerline. Figure from Pope [48].

viscous near-wall region, velocity increases linearly, while in the logarithmic region

dimensionless velocity is given by,

u+ =
1

κ
ln(y+) + C+ (6.3)

where the von Karman constant κ is 0.41, and C+ is empirically defined and related

to boundary layer thickness [18]. Modeling near-wall flow depends upon accurately

reproducing the behavior of the boundary layer regions.

Generally, there are two main approaches to modeling the boundary layer velocity.

The boundary layer region is either discretized using a high cell density or approx-
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imated through wall functions that simulate the viscous sub-layer and buffer region

behavior across a single near-wall cell. In the first approach, the first cell at the wall

must correspond to a y+ of no more than 5 [20]. Because velocity increases linearly

from the wall to roughly y+ = 5 (across the viscous sublayer) [48], linear interpolation

across the single near-wall cell is an adequate approximation. In the kEpsilon model,

no-slip is imposed for the wall velocity, and turbulent kinetic energy k is set to zero

at the wall. Dissipation on the wall surface is not zero in that case, but instead set

to [18],

ε = ν

(
∂2k

∂y2

)
wall

(6.4)

or,

ε = 2ν

(
∂k

1
2

∂y

)2

wall

(6.5)

These boundary conditions are typically combined with a turbulence model modified

to handle the low Reynolds number flow near the wall in addition to an appropriately

large mesh resolution.

Wall functions are a less computationally expensive alternative. Because high

Reynolds number flow causes the viscous sublayer to become extremely thin, bound-

ary layer velocity and turbulence are often approximated. Wall functions model fluid

behavior near the wall without the need to resolve into the linear region. After im-

posing the experimentally-validated [18] velocity profile of the viscous sub-layer and

buffer layer across the first cell at the wall [13], a simple logarithmic velocity pro-

file will then suffice for the rest of the boundary layer. Modeling is therefore more

straightforward, but requires that the cell nearest the wall be no smaller than y+ =

30, where solution accuracy begins to deteriorate [20] [18]. This allows the use of a

less refined mesh. However, the logarithmic layer must extend no farther into the
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flow than a y+ of 500 [13]. Use of wall functions includes the assumption of high

Reynolds number, negligible flow-direction pressure gradient, and velocity variation

in the normal direction only [64].

6.2 Coarse Mesh Results

The Allen case used a mesh with a first node y+ value of 32, with 13 cells across

the inlet (Figure 6.2, top) and 15,600 cells total. The Boelter mesh had 22 cells across

the radius (Figure 6.2, bottom) and 17,600 total cells. Due to the higher velocities in

the smaller diameter Boelter pipe, an effort was made to increase aspect ratio in the

direction of the flow while maintaining reasonable cell quality. The first cell y+ was

37, with an aspect ratio of 8 to avoid extended runtimes due to the Courant number

restriction.

Figure 6.2: Meshes for use with wall functions. (Top) Allen mesh: first near-wall node
corresponds to y+ = 32, 15,600 cells. Maximum cell aspect ratio is 1.6. (Bottom)
Boelter mesh: first point y+ = 37, 17,600 cells. Note the exaggerated axial dimension.
Maximum cell aspect ratio is 8.
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With wall functions, the diffusive flux of turbulence kinetic energy is assumed zero

through the wall [18]. This makes the normal derivative of k zero on the boundary.

Figure 6.3 shows the values of k throughout the pipe, for the Allen kEpsilon, Allen

realizable kEpsilon, and Boelter coarse mesh runs, and the zeroGradient boundary

condition at the wall. Spalart-Allmaras has its own near-wall handling, and as such

is only employed on the fine resolution mesh. Balance of production and dissipation

is generally assumed [18] due to the nearly constant near-wall shear stress, yielding a

relation between velocity and wall shear stress at the first near-wall node,

Pk ≈ τw
∂v̄t
∂y

(6.6)

where Pk is turbulence production and vt is shear velocity. The velocity gradient is

derived from the log-law as,

(
∂v̄t
∂y

)
P

=
uτ
κyp

=
C

1
4
µ

√
kp

κyp
(6.7)

where the subscript P denotes evaluation at the near-wall cell.

The coarse mesh approach to the Allen and Boelter cases applies a constant heat

flux condition for both, for a more straightforward approach. A more detailed ap-

proach will follow, using fixed boundary temperature for the Boelter simulation. The

Allen case uses a constant heat flux of 321,049 W
m2 , while the Boelter case’s bound-

ary is heated with 4,395,490 W
m2 . In the Boelter case, higher velocities and a smaller

pipe translate to much larger maximum turbulence quantities. Because dissipation

depends upon wall-normal spanwise velocity gradient, it is largest close to the wall,

where velocity changes rapidly (Figure 6.4). The turbulence kinetic energy and dissi-

pation fields lead to high turbulent diffusivity near the wall, as αt depends on k2 (Fig-

ure 6.5). Due to the difference in predicted turbulent diffusivity, realizable kEpsilon

shows higher near-wall enthalpy than standard kEpsilon for the Allen case (Figure
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Figure 6.3: Turbulence Kinetic Energy for the coarse mesh Allen and Boelter cases.
Top: Allen, kEpsilon model. Middle: Allen, realizable kEpsilon model. Bottom:
Boelter, kEpsilon model.

6.6, Top, Middle). The resulting enthalpy fields provide the basis for extrapolating

wall temperature to compare to Allen and Boelter’s experimental measurements and

determine simulation accuracy.

Temperature boundary conditions are more complicated than those for velocity.

In the thermal viscous sublayer, conduction dominates, and temperature increases

linearly [20]. Beyond that, it is necessary to quantify the relationship between mo-
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Figure 6.4: Turbulence Dissipation Rate for the coarse mesh Allen and Boelter cases.
Top: Allen, kEpsilon model. Middle: Allen, realizable kEpsilon model. Bottom:
Boelter, kEpsilon model.

mentum and thermal diffusion. This varies by fluid, and is measured by Prandtl

number [48],

Pr =
ν

α
(6.8)

When Prandtl number is much larger than 1 (oil), heat diffuses slowly as compared

to momentum, and the thermal boundary layer is much larger than the velocity
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Figure 6.5: Turbulent Diffusivity for the coarse mesh Allen and Boelter cases. Top:
Allen, kEpsilon model. Middle: Allen, realizable kEpsilon model. Bottom: Boelter,
kEpsilon model.

boundary layer. When much smaller than 1, as is the case for molten metals, thermal

diffusivity dominates instead [20]. In the case of water (with Pr = 7), the temperature

difference between the boundary surface and nearest cell center can be large, even

at high resolution. The analagous quantity under turbulent flow conditions is the

turbulent Prandtl number, which generally lies in the range of 0.75 to 1.
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Figure 6.6: Enthalpy for the coarse mesh Allen and Boelter cases. Top: Allen, kEp-
silon model. Middle: Allen, realizable kEpsilon model. Bottom: Boelter, kEpsilon
model.

There are several relations describing the relationship between the first near-wall

node temperature and that of the wall. If the first near-wall node is inside the thermal

viscous sublayer (below a y∗ of 11.225 [20]), temperature difference is computed as,

(Tw − Tp) =
1

Cp

[
q′′Pry∗

ρC
1
4
µ k

1
2
p

+
1

2
PrU2

p

]
(6.9)
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where Tp, kp, and Up are the near-wall cell center temperature, turbulence kinetic

energy, and velocity. The heat flux per unit area is q′′, Tw is the wall temperature,

and Cµ is a turbulence model constant. If instead the first point is outside the thermal

viscous sublayer,

(Tw − Tp) =

[
Prt

(
1

κ
ln(Ey∗) + P

)
+

1

2
ρ
C

1
4
µ k

1
2
p

q′′
(
PrtU

2
p + (Pr − Prt)U2

c

)] q′′

ρCpC
1
4
µ k

1
2
p

(6.10)

P = 9.24

[(
Pr

Prt

) 3
4

− 1][1 + 0.28e−0.007
Pr
Prt

]
(6.11)

where Uc is the velocity where the laminar and logarithmic regions meet, E is the

constant 9.793, and Prt is turbulent Prandtl number. Further, the temperature in

the log-law region can be approximated more simply with the empirical relation [28]

[9],

(Tw − Tp) = [2.2ln(y+) + 13.39Pr
2
3 − 5.66]Tτ (6.12)

provided that Prandtl number does not greatly exceed the range of 0.7 to 5.9 [28].

The friction temperature Tτ is given by [9],

Tτ =
q′′

ρCpuτ
(6.13)

and the friction velocity uτ is [48],

uτ =
Reτν

δ
(6.14)

where δ is the channel half-width. The friction Reynolds number can be approximated

as Reτ = 0.09Re0.88 [48].

These relations provide an estimate of wall temperature from near-wall cell tem-

perature, and are more accurate than an inappropriate linear wall-to-bulk tempera-

ture profile assumption. However, when applying these relations to the Allen kEp-

silon simulation, near-wall cell center temperature difference is highly overpredicted.
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When calculated with Equation 6.10 and locally computed kEpsilon turbulence ki-

netic energy, Reτ , Prandtl number, laminar viscosity, and thermal conductivity, the

bulk-to-wall temperature difference is an average of 22.11K. When using Equation

6.12, that difference is 27.49K. In experiment, the bulk-to-wall temperature differ-

ence never exceeds 13.52 K.

The current work deals with what Kays and Crawford [28] call the thermal entry-

length problem or turbulent Graetz problem, where fluid enters a heated region at a

uniform temperature but with a fully developed velocity profile where heat transfer

begins. Solutions are known for thermal boundary layer temperature profile with

dimensionless distance to the wall both in the general case [28] and internal tube flow

[9] [67]. However, these are calculated under fully developed velocity and thermal

conditions. The issue at hand is more complicated and specific.

The current solutions, as given by Kays and Crawford, determine bulk flow mixed

mean temperature to wall temperature difference, based on Nusselt number and en-

trance length. They provide a family of solutions that cover a variety of possible

problem formulations. The key detail is the spanwise temperature profile, deter-

mined by the dimensionless wall coordinate. Temperature variation is derived from

the appropriate differential energy equation for the specific case of a turbulent tube

flow [28],

1

r

[
r(α + εH)

∂T̄

∂r

]
= ū

∂T̄

∂x
(6.15)

where r is distance to the wall, εH + α is the total conductance, and x is the axial

distance coordinate. Fluid properties are assumed constant, along with heat rate.

The wall coordinate is folded up into an average temperature T̄ term as the relation

is integrated, and closure is provided through computational eigenvalue analysis and

empirical closure constants for the series approximation of several terms. This yields

closure and a final relation usable specifically for finding the temperature difference
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between the wall and bulk flow but smears the detail associated with near-wall node

temperature. While finding the mixed mean bulk temperature and using the given

relation to find the surface temperature is feasible, it does not adequately test the

accuracy of the implemented enthalpy equation. Further research into closing Equa-

tion 6.15 while maintaining an allowance for near-wall distance is necessary before an

adequate comparison can be made between the experimental wall temperature and

wall-function-closed simulations.

Alternatively, a highly refined mesh could be used, such that the first near-wall

node lies within the viscous thermal sublayer. This would require the use of a low-

Reynolds number turbulence model instead of wall functions. However, because of the

unknown nature of the temperature interpolation relation between the wall and first

node, determining the necessary resolution may require trial-and-error or empiricism.
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CHAPTER 7

FINE MESH APPROACH: SPECIFIED HEAT FLUX

The following section examines the Allen and Boelter cases with a finely resolved

mesh. While the mesh used in both cases is the same, due to the differing scale of

the two experiments and the velocities present the Boelter case operates at a y+ of

24, a non-ideal but reasonable minimum y+ for the use of wall functions. At this

y+, however, temperature difference is likely to be large between the wall and bulk

flow. The calculated enthalpy is presented, but no extrapolation of simulation wall

temperature is attempted. In the Allen case, the near-wall cells represent a minimum

y+ of 5. Due to the inaccuracies of using wall functions at low y+, this translates to

a 20% overestimation of near-wall cell velocity in simulation. The computed near-

wall enthalpy is reported and compared to the experimental wall temperature, but

similarly no extrapolated temperatures are presented. Both experimental cases were

simulated using wall functions, on a mesh with a minimum y+ of 5 for the Allen case,

and y+ of 24 for the Boelter case. In each case, for turbulence kinetic energy the

compressible kqRWallFunction was used, with the compressible epsilonWallFunction

for dissipation. No-slip was used for the velocity wall boundary condition.

7.1 Results

The fine resolution mesh is a 5° wedge, one cell thick (Fig. 7.1), made up of

approximately 104,000 cells (102,000 hexahedra, 2000 prisms). The mesh is axisym-

metric about the center axis of the pipe and of L/D 30. Because of the structured

nature of the mesh, every cell face is either in the direction of the flow or perfectly nor-
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mal to it. As such, the OpenFOAM utility checkMesh reported a non-orthogonality

of zero. The maximum skewedness was 0.333, and the maximum aspect ratio was

3.783, both of which are reasonable for stability.

Figure 7.1: Side-view of computational domain. Contains 104,000 cells in total.

7.1.1 kEpsilon

The results obtained with kEpsilon are plotted in Figure 7.2 against the experi-

mental outcome. The figure shows normalized heat transfer coefficient values, with

each locally calculated h divided by the reference href (the average h across the last

6 pipe diameters). The normalized heat transfer coefficient was an average of 2.75%

higher than Allen’s experimental values, across the entire data set (Figure 7.2). This

error rises to 7.76% when considering only the first six points from the inlet. This

is perhaps a better gauge of model performance, as the normalized curve always

approaches unity due to its normalization factor, skewing the average. The model

predicts the highest near-wall αt of the three models, yielding the lowest wall enthalpy

values as more heat is convected towards the center of the flow. Further, kEpsilon

slightly overpredicts the gradient of the wall enthalpy rise early in the pipe.

Turbulent diffusivity αt is shown in Figure 7.3. Turbulent diffusivity is distributed

in a smoothly increasing gradient from the wall to the centerline (Figure 7.3), where
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Figure 7.2: Normalized heat transfer coefficient vs. axial pipe location, calculated
using HRMFoam with kEpsilon. Local heat transfer coefficient values are normalized
by the average heat transfer coefficient over the last 6 diameters of pipe length. (Right)
HRMFoam results tabulated by x/D, axial pipe length measured in pipe diameters.

it reaches a maximum of 0.164 kg
ms

. This diffusivity causes kEpsilon to predict a

bulk temperature rise of 5.901°F, 0.53% above the experimental rise of 5.87°F. The

outlet temperature predicted by kEpsilon was 65.557°F, 0.047% above Allen’s outlet

temperature.

Figure 7.3: Turbulent diffusivity for the kEpsilon turbulence model. Note that each
αt plot uses the same scale for comparison. kEpsilon predicts a maximum of 0.164
kg
ms

.
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7.1.2 Realizable kEpsilon

The heat transfer coefficient data from the realizable kEpsilon model are plotted

in Figure 7.4. The HRMFoam prediction data are 3.57% from the experimental val-

ues on average, and 9.97% in the first six curve points. The bulk rise was predicted

as 5.867°F, 0.05% below the observed bulk rise. This translates to a final temper-

ature of 65.523°F, 0.005% below Allen’s observed temperature. Realizable kEpsilon

better predicts the bulk outlet temperature and enthalpy of the wall as a whole, but

exaggerates the difference between the inlet and outlet wall enthalpies as compared

to kEpsilon. This raises the reference enthalpy, which causes the heat transfer coef-

ficient curve to appear less accurate. The model predicts larger values of turbulent

diffusivity in a more focused region about the centerline (Figure 7.5).

Figure 7.4: Normalized heat transfer coefficient vs. axial pipe location measured in
diameters, calculated using HRMFoam with Realizable kEpsilon.
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Figure 7.5: Turbulent diffusivity for the Realizable kEpsilon turbulence model. Re-
alizable kEpsilon predicts the highest peak αt values, about the centerline.

7.1.3 Spalart-Allmaras

The model reproduced the heat transfer coefficient curve (Figure 7.6) within 0.63%

for all points, or 2.9% for the first six, replicating the shape of the curve more faithfully

than either of the other models. It also predicted the lowest αt values of the three

(Figure 7.7), yielding the highest wall enthalpy values close to the pipe inlet and

the closest match to Allen’s wall temperature data. The experimental bulk rise was

predicted to within 1.17%, at 5.939 °F, and a final temperature of 65.595°F (0.11%

above the experimental value).
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Figure 7.6: Normalized heat transfer coefficient vs. axial pipe location measured in
diameters, calculated using HRMFoam with Spalart-Allmaras.

Figure 7.7: Turbulent diffusivity for Spalart-Allmaras. Because αt is more conserva-
tively estimated than in the kEpsilon models, the more heat remain in the near-wall
region.
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7.2 Near-wall Enthalpy Curves

Figure 7.8 shows a comparison of the near-wall enthalpy values for each turbulence

model, plotted against Allen’s wall enthalpy data. Allen’s enthalpy values were back-

calculated from the known temperature difference at the control point of 24°F, and

the published normalized heat transfer coefficient curve.
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Figure 7.8: Axial Near-Wall Enthalpy, Allen. The non-dimensional axial distance
from the pipe inlet is x/D, where D is the pipe diameter. Allen’s wall enthalpy
values calculated from the heat transfer coefficient and known temperature difference
at the control point. Data from Allen [1].

It is interesting to note the differences in predicted near-wall temperature between

the three models. kEpsilon predicted the largest near-wall turbulent diffusivity, and

as such reports the lowest enthalpy values close to the wall. Although Realizable

kEpsilon predicts the highest centerline turbulent diffusivity of the three turbulence

models, it predicts lower values near the wall, producing higher near-wall enthalpy

values than kEpsilon. While it provides a more accurate estimate of wall enthalpy,

the Realizable kEpsilon does overestimate the difference in near-wall cell enthalpy

between the inlet and outlet. It does, however, approach the enthalpy of the wall
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nearest the outlet most accurately. Spalart-Allmaras predicts the trend of the exper-

imental curve very accurately, while also returning the closest enthalpy values near

the pipe inlet. Low values of αt are predicted, and do not convect away as much of

the entering heat flux as either kEpsilon or Realizable kEpsilon.

7.3 Conclusions

It is clear that the transport of enthalpy is dependent upon αt prediction. Be-

cause kEpsilon tends to overpredict turbulence quantities, especially in regions of

favorable pressure gradient, it disperses enthalpy throughout the flow. While all

three models predict near-identical exit temperature and total heat added, larger αt

prediction translates to a colder wall and a warmer bulk flow. Spalart-Allmaras, with

its conservative estimate of αt, best predicts the experimental heat transfer coefficient

curve shape and wall temperature data. Realizable kEpsilon best predicts the outlet

temperature.
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CHAPTER 8

FINE MESH APPROACH: SPECIFIED SURFACE
TEMPERATURE

Boelter’s experiment was also modeled using the fine resolution grid. While Boel-

ter included temperature measurements for his entire pipe length of 100 diameters,

only the first 8.34 inches (0.211 meters) of the heated region are included in simula-

tion, as in the coarse mesh case. The mesh is the same 104,000 cell, 5° wedge mesh

used in the fine resolution Allen case. To match the Boelter experiment, the mesh is

scaled to model the L/D 36.3 region of pipe, 0.2289 inches (0.0058 m) in diameter.

In the Boelter fine mesh runs, the specified surface temperature boundary condi-

tion is used. Boelter recorded surface temperature data throughout the length of the

pipe, providing an opportunity for a more rigorous validation method. Under specified

heat flux conditions, the amount of heat entering the domain via enthalpy gradient

is sensitive only to turbulent diffusivity. With specified surface temperature, both

the turbulent diffusivity and heat flux vary as the difference in temperature between

the wall and flow drives total enthalpy addition. Outlet temperature is therefore

more sensitive to prediction accuracy under specified surface temperature conditions,

yielding more stringent validation.

8.1 Results

Velocity, pressure, and vapor fraction can be seen in Figure 8.1. The velocity

profile and vapor fraction remain constant throughout the pipe length. Due to the

no-slip walls velocity boundary condition, pressure drops linearly by 0.1 MPa between
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the inlet and outlet. The bulk fluid is raised 38 °F to 445.573°F, 16.7% above Boel-

ter’s experimental temperature rise to 440.13°F. The experimental mass flow rate is

matched within 0.001%. The kEpsilon model predicts an αt that increases from the

wall to the centerline quickly (Figure 8.2).

Figure 8.1: Boelter simulation velocity, pressure, and vapor fraction.

At the experimental Reynolds number of 336,000, turbulence causes fluctuations

similar to those of the Allen case, at approximately 3.2% of mean flow velocity.

However, the predicted αt (Figure 8.2) is approximately 33% less than that of the

Allen case run with the same turbulence model. While the Boelter case has a much

higher velocity and therefore larger turbulent kinetic energy, in this case the disparity

in length scales has a much larger effect on turbulent dissipation, overshadowing

thermal diffusivity’s k2 dependence.
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Figure 8.2: Boelter simulation enthalpy and turbulent diffusivity
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CHAPTER 9

MODULE INTERACTION TESTING

While the enthalpy transport model produces accurate results in isolation, its

interaction with other aspects of the code should be explored. The transport of

enthalpy was also tested in conjunction with compressibility, beginning with single-

phase flow. A pressure-driven nozzle simulation was conducted using a diesel-scale

injector geometry, with a perfectly sharp inlet orifice. The L/D 4 nozzle was modeled

as a 5° wedge, using 24,000 cells (Figure 9.1). The upstream pressure was set to 10

MPa, with 5 MPa at the downstream orifice, and a vapor fraction of zero at the inlet.

Figure 9.1: Mesh used to test interaction of compressibility and heat transfer in
HRMFoam. 24,000 cells, 5°wedge.

Fluid entering the domain was 286K (at an enthalpy of 65000 J). Enthalpy was

added to the domain through a heatFlux boundary condition imposed at the wall,

imparting 6.24E7 watts/m2. The outlet enthalpy boundary condition was inletOutlet,

to ensure entrained fluid was a reasonable temperature. Fluid entrained by the exiting

spray entered at 286K. kEpsilon was the turbulence model used.
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Figure 9.2: Enthalpy and velocity for single-phase compressible heat transfer. (Top)
Velocity in the throat is much higher than the Allen or Boelter cases.

Upon reaching steady state, the distribution of enthalpy was found to be heavily

concentrated in the near-wall region of the inlet and outlet plena (Figure 9.2). Velocity

is extremely low in that region, causing fluid near the wall to clear from the plena very

slowly. This large residence time allows for the fluid there to absorb large amounts

of heat. The outlet plenum is much higher temperature than anywhere else in the

domain; Figure 9.2 is scaled to show the gradations in the distribution of enthalpy.

Maximum enthalpy is 7.66E5 J on the outlet plenum wall.

Figure 9.3: Pressure for single-phase compressible heat transfer. Note the presence
of the vena contracta.
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Despite the large enthalpy addition from the wall, the fluid remains single-phase

due to the high pressure throughout the domain (Figure 9.3). Pressure is lowest in

vena contracta, at the inlet corner. Because velocity peaks there as well, turbulent

diffusivity is large in the throat (Figure 9.4). This is almost certainly an overprediction

of αt, as a favorable large pressure gradient tends to suppress turbulence, which

kEpsilon does not suggest.

Figure 9.4: Vapor fraction and turbulent diffusivity for single-phase compressible heat
transfer.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

The HRMFoam vaporization model was combined with a transport equation for

enthalpy. With the energy equation implemented, experimentally measured heat flux

and wall temperature curves were applied to a modeled pipe geometry. Validation was

then conducted through two experimental single-phase flow cases using the specified

heat flux and specified surface temperature boundary conditions. In the Allen case, all

three turbulence models predicted outlet temperatures that were within 0.1% of the

experimental outlet temperature of 65.53°F, from a bulk temperature rise predicted

within 1.17%. HRMFoam predicted a bulk rise of 38°F in the Boelter case, 16.7%

above the experimental 32.56°F. Heat transfer coefficients for the Allen case were

calculated to within an average of 2.9% (for the first six points), with the assumption

that near-wall and wall surface temperature were approximately equal. However,

more research needs to occur before the model can be deemed quantitatively accurate.

Further analysis should more deeply explore the relationship between dimension-

less wall distance and temperature in developing thermal boundary layers under fully

developed hydrodynamic conditions. A model relating thermal entry length, non-

dimensional wall distance, and temperature would allow for more accurate assessment

of the model’s performance, and is necessary before the experimental results can be

compared to simulation output with minimal use of approximating assumptions. This

would require integrating Equation 6.15 while leaving the wall coordinate intact, and

possibly closing the relation with eigenvalue analysis and empirical methods similar

to Kays and Crawford [28]. With a firmer understanding of that temperature rela-
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tionship, both coarse grid simulations with wall functions and fine grid simulations

using a low Reynolds number model should be compared. Near-wall temperature

could then be extrapolated to assess simulation wall temperature.

With the core model validated, basic stress testing should be conducted with

large velocities, larger boundary heat flux, compressibility, and non-condensible gas.

Expansion to two-phase flow, and eventually fully 3D flow would be logical next steps

as well. Modeling in full 3D would allow for the use of LES, and the removal of the

axisymmetric assumption.
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APPENDIX

ENERGY TRANSPORT EQUATION IMPLIMENTATION

Included here is the raw C++ code of hEqn.H, the implimentation of the energy

transport equation in HRMFoam.

{

vo l S c a l a rF i e l d cpMix = (1−x)∗(1−y )∗ cpL + x∗(1−y )∗cpV + y∗Model . cpGas ( ) ;

v o l S c a l a rF i e l d alphaMix = Model .K( ) / ( cpMix ) ;

i f (U. db ( ) . foundObject<vo lS ca l a rF i e l d >(” a lphat ” ) )
{

const v o l S c a l a rF i e l d& alphat = U. db ( ) . lookupObject<vo lS ca l a rF i e l d >(” a lphat ” ) ;
alphaMix += alphat ;

}

vo lTensorF ie ld gradU = fvc : : grad (U) ;

fvSca la rMatr ix hEqn
(
fvm : : ddt ( rho , h)
+ fvm : : div ( phi , h , ” div ( phi , h )” )
==
fvc : : ddt (p)
+ (U & fvc : : grad (p ) )
+ fvm : : l a p l a c i a n ( alphaMix , h) // turbu l ent enthalpy d i s p e r s i o n
+ turbulence−>mut ( ) ∗ ( ( gradU + gradU .T( ) ) && gradU ) // v i s c ou s d i s s i p a t i o n
) ;

hEqn . s o l v e ( ) ;

f vc : : makeRelative ( phiv , U) ;

}
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